MB2024 Program Schedule

All times are local, BST

Wednesday 15th May

Time	Conference Suite 2A	Meeting Room 4	Meeting Room 7	Meeting Room 5
09:00 - 10:00	Keynote: Anne-Marie Brouwer			
	Measuring Mental States			
10:00 - 10:40	Measuring behavior and physiology in and	Advances in using AI to assess animal behaviour	Behavioral tests (A)	Workshop: Certifyin
	around the cockpit	and welfare		Technologies
10:00 - 10:20	Ivo Stuldreher - Assessing progress in flight	Mona Giersberg - Transdisciplinary Initiatives to	Mahesh Karnani - Measuring motivational	
	performance in a virtual reality simulator	Collaborate on the Responsible Use of AI for	switching in mice using open-design: the	
		Animal Welfare	Switchmaze	
10:20 - 10:40	Bertille Somon - EEG characterization of dynamic	Marlou van der Sluis - Using Multi-Directional	Eline Eberhardt - Interobserver Reliability and	
	complex processes and rare events to	Computer Vision for Automated Leg Health	Validity for Video-based Clinical Behavior of	
	understand operator's activity in aeronautical	Scoring in Broilers	Canines in Preclinical Safety Studies	
	context.			
10:40- 11:10	Break			
11:10 - 12:30	Measuring behavior and physiology in and	Advances in using AI to assess animal behaviour	Methods for the Study of Olfactory learning and	Technology for meas
1	around the cockpit	and welfare	Memory	
11:10 - 11:30	Anneka Hamann - A Window into the Mind? On	Arjan van Putten - Identifying and tracking group	Kyle Roddick - An Overview of Methods for	Poja Shams - Monito
	Usefulness and Challenges of Neurophysiological	housed hens using ArUco marker backpacks	Measuring Olfaction in Rodents	of Physiological Mea
	Measurements in the Cockpit			Workplace Well-beir
11:30 - 11:50	Maykel van Miltenburg - Unlocking Cost-	Oleksiy Guzhva - Al in rose-coloured glasses:	Richard Brown - Pavlovian Conditioned Odour	Jennifer Lumetzberg
	Effective Insights: Leveraging Webcam Metrics	how close to an individual animal can (should)	Preferences in Mice	Computer Vision: Les
	for Cognitive Workload Assessments	we come?		Behavior in the Real
11:50 - 12:10		Saif Agha - AI-PigNet: Insights into the social	Wyatt Ortibus - Olfactometer Methodologies in	Jeanette Hadaschik -
11.50 - 12.10			Rodent Olfaction Research: "What can we test	Decision-Making Tas
		social network analysis	about learning and memory?"	environments
		social network analysis		environments
12:10 - 12:30		Emma Baxter - Challenges and opportunities of	Robert Gerlai - Olfactory Cues in Zebrafish	Bénédicte Batrancou
		working with PLF technology and AI researchers:	Behavioural Studies: From Anxiety to Learning	behavioral marker of
		the applied ethologist's experience		using sensors.
12:30 - 14:00	Lunch			
14:00 - 15:00	Human factors	Advances in using AI to assess animal behaviour	Behavioral tests (B)	Tutorial: Beats Scier
		and welfare		video analysis for be
//////////////////////////////////				

ing Digital Monitoring easuring behavior (A) toring Work Stress: The Role easures in Enhancing eing rger - From Bees to Prisons in essons for Recording al World k - Implementing Behavioural asks into Virtual Reality ourt - Rest activity pattern as of apathy in patients at home ence Coding – Web-based behavioural sciences
asuring behavior (A)
toring Work Stress: The Role easures in Enhancing eing
rger - From Bees to Prisons in essons for Recording al World
k - Implementing Behavioural asks into Virtual Reality
ourt - Rest activity pattern as of apathy in patients at home
ence Coding – Web-based behavioural sciences

Evening	Reception			
	the role of dopamine in anergia			
10:00 - 17:10	running wheel: a mice paradigm to evaluate preference for reinforcers that require vigor and	Integrating Wild Animal Welfare into Behaviour		
16:50 - 17:10	Mercè Correa - The 3 choice-T-maze task with	equines Janire Castellano Bueno - Bridging the Gap -		
16:30 - 16:50	John Salamone - Modeling Aspects of Apathy in Rodents using Effort-based Choice Procedures.	Sonia Rey - Rhythmicity as a welfare indicator – effect of extrinsic and intrinsic motivation in		
16:10 - 16:30	Richard Brown - Measuring "apathy" in mouse models of AD	Monica Battini - Setting up an observation strategy to record feeding synchronization in dairy cows	Mathilde Coutant - Bioacoustic sensors to monitor farm animal welfare: why the ethology matters	
15:50 - 16:10	Nicole Edwards - The splash test as a model of rodent apathy	Ineke Smit - Quantifying equine facial expressions with optical motion capture and surface electromyography; a proof of concept	Bruna Bezerra - Primate Detection Through Passive Acoustic Monitoring Varies According to Species and the Biome	
15:30 - 15:50	Lianne Robinson - Development of a Behavioural Test Battery to assess Apathy-like Behaviours in Mouse Models of Neurodegeneration	Claire Witham - Home cage monitoring of group- housed animals in highly enriched enclosures	Buddhamas Pralle Kriengwatana - Acoustic features of vocalisations of laying hens in positive and negative emotional states	
15:00 - 15:30 15:30 - 17:10	Break Using behavioural approaches to measure apathy-like behaviour in rodents	Animal welfare	<u>Bioacoustics</u>	Tutorial: DISK — a D missing skeleton data
14:40 - 15:00		Albert Ali Salah - Automatic pain estimation in equines and canines	Tereza Nekovářová - Measuring Episodic Memory in Preschool Children	Demonstration: A Ne Operant Conditioning
14:20 - 14:40	Stephen Provost - Identifying Team Process Behaviours of Clinical Nursing Teams Working on Lower-acuity Hospital Units	Welfare?	Perception of Novel Odours (Pig Odour Hedonics)	
	Continuous Frustration Assessment in a Simulator and Real-World Setting	disease in farm animals: Vision-Al for automatic analysis of face, gait and motion for sheep behavior understanding	Assessing Cognitive Control and Memory Functions in Nonhuman Primates Using Gamified Tasks	
14:00 - 14:20	Esther Bosch - Beyond Snapshots: Validation of a	Marwa Mahmoud - Towards early prediction of	Thilo Womelsdorf - Translational Validity of	

Thursday 16th May

Time	Conference Suite 2A	Meeting Room 4	Meeting Room 7	Meeting Room 5
09:00 - 10:00	Keynote: Robert Gerlai			
	What motivates zebrafish? Searching for effectiv	e unconditioned stimuli for appetitive associative		
10:00 - 11:00	AI and machine learning	Novel Methods in Measuring Animal Affective	Behavioral tests (C)	Workshop: Exploring
		<u>States</u>		Analysis in Sports to

on: A New Approach to Setting Up ditioning Experiments K — a Deep Learning method for ton data imputation in 2D and 3D	
on: A New Approach to Setting Up	
ditioning Experiments	
K — a Deep Learning method for	
ton data imputation in 2D and 3D	
ton data imputation in 20 and 30	
m 5	

ing Novel Change Point to Other Domains

	Eline Eberhardt - Video-Tracking Locomotor Activity of Canines in Preclinical Safety Studies	Lauren Finka - Using Facial Action Unit and Geometric Morphometric approaches to quantify animal facial movements and their interpretability in the context of affective states	Robyn Grant - From labs to zoos to the field: mammalian whister and avian rictal bristle behaviour	
10:20 - 10:40	Tenzing Dolmans - Real-Time Adaptive Machine Learning Systems for Personalised Bruxism Management	Bridget Waller - Can Facial Action Coding Systems (FACS) be used to Quantify Emotion in Animals?	Ugne Simanaviciute - Developing novel whisker movement tests to examine object-related exploration and habituation in Reeler mice	
10:40 - 11:00	Jeanne I.M. Parmentier - Measuring equine respiration in the field: an exploration of microphone data and deep learning detectors	Claire Ricci-Bonot - Automated recognition of facial expression of frustration and disappointment in horses during feeding period	Veronika Borbélyová - Age- and Sex-Related Behavioral Changes During the Lifespan of Wistar Rats	
11:00- 11:20		Catia Correia-Caeiro - A new observational tool for measuring facial movement in gorillas (<i>Gorilla</i> spp.): GorillaFACS - The Gorilla Facial Action Coding System	Ashwin Miriyala - Neural Control of Odour Seeking Behaviour In the Fruit Fly	
11:00 - 11:30	Break	ញំពាក់ពាល់ចំណើតអាចការអាចការអាចការអំពីការអង់អាចការអាចការអាចការអាចការអាចការអាចការអាចការអាចការអាចការអាចការអាចការអ 		
11:30 - 12:30	AI and machine learning	Novel Methods in Measuring Animal Affective States	Digital Innovations in Home Cage Monitoring	
	Alyx Elder - Challenging Machine-Learning with Underwater Whisker Tracking in South African Fur Seals (<i>Arctocephalus pusillus</i>)	Tiago Monteiro - Dogs' tail as a metronome of their emotional states and its use as a communicative tool: effects of intra and interspecific audiences during a frustration condition	Stefano Gaburro - Home cage rack-based technology: welfare and scientific applications	
	Harry Gill - Validation Of An Al-based Markerless Tracking Approach For Gait Analysis In Domestic Dogs	George Martvel - CatELD: an Automated	Michael Tsoory - Detecting Sciatic nerve injury (SNI) induced motor impairments and recovery using the DVC system; a core facility unit user's perspective	The future of the Me conferences series
12:10 - 12:30		Anna Zamansky - The Development of a Facial Landmark Scheme for Dogs	Fabrizio Scorrano - Use of rack base technologies in Pharmaceutical Settings	
12:30 - 14:00	Lunch		12:30 - 12:50 Thomas Svava Nielsen - Urination in the Home Cage: Development of a Digital Biomarker for Sample-Free Diagnosis of Diabetes in Mice	
13:30 - 14:00	Poster pitches			
14:00 - 15:00 14:00 - 14:20			Tutorial: DIY home-cage monitoring	Demonstrations Climbing test for auto vertical activity in mic
14:20 - 14:40 14:40 - 15:00	Posters (in exhibtion area)		Demonstration: Beats - Alan Weisscher (Eumedia)	(Ugo Basile) The Ethometer – Will Advanced in-depth pl Michael Florea (Older

e Measuring Behavior
e Measuring Behavior
e Measuring Behavior ies
<u>ies</u>
<u>ies</u>
<u>ies</u>
ies
ies
ies
ies
<u>ies</u> <u>s</u> r automated measurement of
ies
ies s r automated measurement of in mice – Frederico Montechiaro
ies 5 r automated measurement of in mice – Frederico Montechiaro – Willem Dekkers (Royal GD)
ies S r automated measurement of in mice – Frederico Montechiaro – Willem Dekkers (Royal GD) pth phenotyping smart cage –
ies 5 r automated measurement of in mice – Frederico Montechiaro – Willem Dekkers (Royal GD)

15:00 - 15:30	Break			
15:30 - 16:50	Considerations in behavioural phenotyping of	Multi-modal measurements	Tutorial: Computer Vision Tools for Measuring	Workshop: Measuring
	genetic mouse models of Alzheimer's disease		<u>Behavior</u>	animals
	and frontotemporal dementia			
15:30 - 15:50	Sevda Boyanova - Behavioural, cognitive and	Fan Xu - The constructive effect of positive		
	sensory phenotyping of knock-in mouse models	encouragement on preschool children		
	of Alzheimer's disease and frontotemporal			
	dementia			
15:50 - 16:10	Szu-han Wang - A simple task reveals mixed	Ivo Stuldreher - Classifying arousal and valence		
	findings: factors to consider in preclinical	from facial expressions and physiological		
	behavioural research	responses evoked by multiple stressors		
16:10 - 16:30	Loukia Katsouri - Behavioural characterisation of	Anna Kis - Non-invasive ways to measure sleep		
	humanised APP knock-in mice	behaviour in family dogs		
16:30 - 16:50	Julija Krupic - Cognitive and Behavioural	Nattapong Thammasan - Towards a Multi-Modal		
	Phenotyping of APP-KI mice in the home cage	Human Digital Twin for Nutrition and Wellbeing		
	enclosures			
Evening	Conference dinner			

Friday 17th May

Time	Conference Suite 2A	Meeting Room 4	Meeting Room 7	Meeting Room 5
09:00 - 10:00	Keynote: Albert Ali Salah			
	Designing Computational Tools for Behavioral an	d Clinical Science		
10:00 - 11:00	TEATIME presents: Enhancing Reproducibility	Al advances in pose estimation and behavior	Measuring farm animal behavior	Optimizing analysis
	and Animal Welfare through Home Cage	recognition in laboratory animals		resolution behaviou
	<u>Systems</u>			
10:00 - 10:20	Rasneer Sonia Bains - Listening Carefully, the	Thomas Wollmann - DeepRod: A human-in-the-	Marie Schneider - Method comparison to	Mike Toscano - Meth
	Challenges of Recording Home Cage Ultrasonic	loop system for automatic rodent behavior	analyse the activity rhythm of dairy cows during	movement within an
	Vocalizations	analysis	early lactation	a commercial system
				time
10:20 - 10:40	Irmgard Amrein - Clever testing of smart mice	Caleb Weinreb - Parsing the sub-second	Laura Torres Borda - Equine social proximity	Juan Steibel - Dyadic
	with IntelliCage protocols avoiding water	structure of animal behavior with Keypoint-	according to space availability using ultra-	analysis of behaviora
	restrictions	MoSeq	wideband technology	
10:40 - 11:00	Lars Lewejohann - Home-cage based testing:	Liezl Maree - Multi-view triangulation-enabled	Johanna Stenfelt - Olfactory Conditioning in	Lucas Fontanesi - Eu
	How to bring the test to the animal and not the	annotation for multi-animal 3D pose in SLEAP	Farm Animals - A Discussion of Methods	Livestock Phenomics
	animal to the experiment			Data Focused on All
				Phenotypes, Includir
11:00 - 11:30	Break			
11:30 - 12:10	TEATIME presents: Enhancing Reproducibility	Al advances in pose estimation and behavior	Measuring farm animal behavior	Technology for mea
	and Animal Welfare through Home Cage	recognition in laboratory animals		
	<u>Systems</u>			
11:30 - 11:50	Lior Bikovski - Home cage: a uniquely sensitive	Vivek Kumar - End-to-end behavior annotation	Wijbrand Ouweltjes - An investigation of several	John Church - Effecti
	tool for detecting hidden phenotypes	pipeline for mouse behavior annotation.	methods to monitor behaviour of housed dairy	drones for use in rea
			cows	animal identification

: Measuring the welfare of wild
oom 5
analysis of longitudinal, high
<u>; analysis of longitudinal, high</u> behavioural data
<mark>g analysis of longitudinal, high_</mark> behavioural data ano - Methods to assess variation of
<mark>g analysis of longitudinal, high behavioural data</mark> ano - Methods to assess variation of c within and across laying hens within
<mark>g analysis of longitudinal, high_</mark> behavioural data ano - Methods to assess variation of
<mark>g analysis of longitudinal, high behavioural data</mark> ano - Methods to assess variation of c within and across laying hens within
<mark>a analysis of longitudinal, high behavioural data behavioural data ano - Methods to assess variation of a within and across laying hens within cial system over extended periods of</mark>
analysis of longitudinal, high behavioural data ano - Methods to assess variation of within and across laying hens within cial system over extended periods of el - Dyadic linear models for genetic
analysis of longitudinal, high behavioural data ano - Methods to assess variation of within and across laying hens within cial system over extended periods of el - Dyadic linear models for genetic
analysis of longitudinal, high behavioural data ano - Methods to assess variation of within and across laying hens within cial system over extended periods of el - Dyadic linear models for genetic behavioral interactions
ano - Methods to assess variation of within and across laying hens within cial system over extended periods of el - Dyadic linear models for genetic behavioral interactions
ano - Methods to assess variation of within and across laying hens within cial system over extended periods of el - Dyadic linear models for genetic behavioral interactions anesi - European Network on Phenomics (EU-LI-PHE): Mission on Big sed on All Types of Animal-Related
ano - Methods to assess variation of within and across laying hens within cial system over extended periods of el - Dyadic linear models for genetic behavioral interactions anesi - European Network on Phenomics (EU-LI-PHE): Mission on Big
ano - Methods to assess variation of within and across laying hens within cial system over extended periods of el - Dyadic linear models for genetic behavioral interactions anesi - European Network on Phenomics (EU-LI-PHE): Mission on Big sed on All Types of Animal-Related
analysis of longitudinal, high behavioural data ano - Methods to assess variation of within and across laying hens within cial system over extended periods of el - Dyadic linear models for genetic behavioral interactions anesi - European Network on Phenomics (EU-LI-PHE): Mission on Big sed on All Types of Animal-Related es, Including Behavior
analysis of longitudinal, high behavioural data ano - Methods to assess variation of within and across laying hens within cial system over extended periods of el - Dyadic linear models for genetic behavioral interactions anesi - European Network on Phenomics (EU-LI-PHE): Mission on Big sed on All Types of Animal-Related es, Including Behavior
analysis of longitudinal, high behavioural data ano - Methods to assess variation of within and across laying hens within cial system over extended periods of el - Dyadic linear models for genetic behavioral interactions anesi - European Network on Phenomics (EU-LI-PHE): Mission on Big sed on All Types of Animal-Related es, Including Behavior
ano - Methods to assess variation of within and across laying hens within cial system over extended periods of el - Dyadic linear models for genetic behavioral interactions anesi - European Network on Phenomics (EU-LI-PHE): Mission on Big sed on All Types of Animal-Related es, Including Behavior y for measuring behavior (B)

	11:50 - 12:10	Stefano Gaburro - Using Digital Biomarkers to	Elsbeth van Dam - Fast annotation of Rodent	Christiane Engels - Measuring Dairy Cow	Michael Florea - Tov
		Measure Animal Behavior for Translational	Behaviors with AI Assistance: Human Observer	Behavior Using a Barometric Sensor	home cage: AI and s
		Research: The 3Rs Collaborative Initiative	and Smart Annotator collaborate through Active		whole-body health t
			Learning		
	12:10 - 12:45	Closing session			
	12:45 - 13:30	Lunch			
-					

wards deep physiology in	1
sensor cages for multi-animal	
testing	
testing	